Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Bromine monoxide (BrO) is relevant to atmospheric oxidative capacity, affecting the lifetime of greenhouse gases (i.e., methane, dimethylsulfide) and mercury oxidation. However, measurements of BrO radical vertical profiles are rare, and BrO is highly variable. As a result, the few available aircraft observations in different regions of the atmosphere are not easily reconciled. Autonomous multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments placed at remote mountaintop observatories (MT-DOAS) present a cost-effective alternative to aircraft, with the potential to probe the climate-relevant yet understudied free troposphere more routinely. Here, we describe an innovative full-atmosphere BrO and formaldehyde (HCHO) profile retrieval algorithm using MT-DOAS measurements at Mauna Loa Observatory (MLO – 19.536° N, 155.577° W; 3401 m a.s.l.). The retrieval is based on time-dependent optimal estimation and simultaneously inverts 190+ individual BrO (and formaldehyde, HCHO) SCDs (slant column densities; SCD = dSCD + SCDRef) from solar stray light spectra measured in the zenith and off-axis geometries at high and low solar zenith angles (92° > SZA > 30°) to derive BrO concentration profiles from 1.9 to 35 km with 7.5 degrees of freedom (DoFs). Two case study days are characterized by the absence (26 April 2017, base case) and presence of a Rossby-wave-breaking double tropopause (29 April 2017, RW-DT case). Stratospheric-BrO vertical columns are nearly identical on both days (VCD = (1.5 ± 0.2) × 1013 molec. cm−2), and the stratospheric-BrO profile peaks at a lower altitude during the RW-DT (1.6–2.0 DoFs). Tropospheric-BrO VCDs increase from (0.70 ± 0.14) × 1013 molec. cm−2 (base case) to (1.00 ± 0.14) × 1013 molec. cm−2 (RW-DT) owing to a 3-fold increase in BrO in the upper troposphere (1.7–1.9 DoFs). BrO at MLO increases from (0.23 ± 0.03) pptv (base case) to (0.46 ± 0.03) pptv (RW-DT) and is characterized by an added time resolution (∼ 3.8 DoFs). Up to (0.9 ± 0.1) pptv BrO is observed above MLO in the lower free troposphere in the absence of the double tropopause. We validate the retrieval using aircraft BrO profiles and in situ HCHO measurements aboard the NSF/NCAR GV aircraft above MLO (11 January 2014) that establish BrO peaks around 2.4 pptv above 13 km in the upper troposphere–lower stratosphere (UTLS) during a similar RW-DT event (0.83 × 1013 molec. cm2 tropospheric-BrO VCD above 2 km). The tropospheric-BrO profile measured using MT-DOAS (RW-DT case) and using the aircraft agree well (after averaging-kernel smoothing). Furthermore, these tropospheric-BrO profiles over the central Pacific Ocean are found to closely resemble those over the eastern Pacific Ocean (2–14 km) and are in contrast to those over the western Pacific Ocean, where a C-shaped tropospheric-BrO profile shape has been observed.more » « less
-
Terrestrial volcanism is known to emit mercury (Hg) into the atmosphere. However, despite many years of investigation, its net impact on the atmospheric Hg budget remains insufficiently constrained, in part because the transformations of Hg in volcanic plumes as they age and mix with background air are poorly understood. Here we report the observation of complete gaseous elemental mercury (GEM) depletion events in dilute and moderately aged (∼3–7 hours) volcanic plumes from Piton de la Fournaise on Réunion Island. While it has been suggested that co-emitted bromine could, once photochemically activated, deplete GEM in a volcanic plume, we measured low bromine concentrations in both the gas- and particle-phase and observed complete GEM depletion even before sunrise, ruling out a leading role of bromine chemistry here. Instead, we hypothesize that the GEM depletions were mainly caused by gas–particle interactions with sulfate-rich volcanic particles (mostly of submicron size), abundantly present in the dilute plume. We consider heterogeneous GEM oxidation and GEM uptake by particles as plausible manifestations of such a process and derive empirical rate constants. By extrapolation, we estimate that volcanic aerosols may scavenge 210 Mg y−1 (67–480 Mg y−1) of Hg from the atmosphere globally, acting effectively as atmospheric mercury sink. While this estimate is subject to large uncertainties, it highlights that Hg transformations in aging volcanic plumes must be better understood to determine the net impact of volcanism on the atmospheric Hg budget and Hg deposition pathways.more » « less
-
Iodine is an atmospheric trace element emitted from oceans that efficiently destroys ozone (O 3 ). Low O 3 in airborne dust layers is frequently observed but poorly understood. We show that dust is a source of gas-phase iodine, indicated by aircraft observations of iodine monoxide (IO) radicals inside lofted dust layers from the Atacama and Sechura Deserts that are up to a factor of 10 enhanced over background. Gas-phase iodine photochemistry, commensurate with observed IO, is needed to explain the low O 3 inside these dust layers (below 15 ppbv; up to 75% depleted). The added dust iodine can explain decreases in O 3 of 8% regionally and affects surface air quality. Our data suggest that iodate reduction to form volatile iodine species is a missing process in the geochemical iodine cycle and presents an unrecognized aeolian source of iodine. Atmospheric iodine has tripled since 1950 and affects ozone layer recovery and particle formation.more » « less
-
Abstract. In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.more » « less
-
Abstract. We present an updated mechanism for tropospheric halogen (Cl + Br + I) chemistry in the GEOS-Chem global atmospheric chemical transportmodel and apply it to investigate halogen radical cycling and implications for tropospheric oxidants. Improved representation of HOBr heterogeneouschemistry and its pH dependence in our simulation leads to less efficient recycling and mobilization of bromine radicals and enables the model toinclude mechanistic sea salt aerosol debromination without generating excessive BrO. The resulting global mean tropospheric BrO mixingratio is 0.19 ppt (parts per trillion), lower than previous versions of GEOS-Chem. Model BrO shows variable consistency and biases in comparison tosurface and aircraft observations in marine air, which are often near or below the detection limit. The model underestimates the daytimemeasurements of Cl2 and BrCl from the ATom aircraft campaign over the Pacific and Atlantic, which if correct would imply a very largemissing primary source of chlorine radicals. Model IO is highest in the marine boundary layer and uniform in the free troposphere, with a globalmean tropospheric mixing ratio of 0.08 ppt, and shows consistency with surface and aircraft observations. The modeled global meantropospheric concentration of Cl atoms is 630 cm−3, contributing 0.8 % of the global oxidation of methane, 14 % of ethane,8 % of propane, and 7 % of higher alkanes. Halogen chemistry decreases the global tropospheric burden of ozone by 11 %,NOx by 6 %, and OH by 4 %. Most of the ozone decrease is driven by iodine-catalyzed loss. The resulting GEOS-Chem ozonesimulation is unbiased in the Southern Hemisphere but too low in the Northern Hemisphere.more » « less
-
Abstract. Smoke from wildfires is a significant source of air pollution, which can adversely impact air quality and ecosystems downwind. With the recently increasing intensity and severity of wildfires, the threat to air quality is expected to increase. Satellite-derived biomass burning emissions can fill in gaps in the absence of aircraft or ground-based measurement campaigns and can help improve the online calculation of biomass burning emissions as well as the biomass burning emissions inventories that feed air quality models. This study focuses on satellite-derived NOx emissions using the high-spatial-resolution TROPOspheric Monitoring Instrument (TROPOMI) NO2 dataset. Advancements and improvements to the satellite-based determination of forest fire NOx emissions are discussed, including information on plume height and effects of aerosol scattering and absorption on the satellite-retrieved vertical column densities. Two common top-down emission estimation methods, (1) an exponentially modified Gaussian (EMG) and (2) a flux method, are applied to synthetic data to determine the accuracy and the sensitivity to different parameters, including wind fields, satellite sampling, noise, lifetime, and plume spread. These tests show that emissions can be accurately estimated from single TROPOMI overpasses.The effect of smoke aerosols on TROPOMI NO2 columns (via air mass factors, AMFs) is estimated, and these satellite columns and emission estimates are compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America. Our results indicate that applying an explicit aerosol correction to the TROPOMI NO2 columns improves the agreement with the aircraft observations (by about 10 %–25 %). The aircraft- and satellite-derived emissions are in good agreement within the uncertainties. Both top-down emissions methods work well; however, the EMG method seems to output more consistent results and has better agreement with the aircraft-derived emissions. Assuming a Gaussian plume shape for various biomass burning plumes, we estimate an average NOx e-folding time of 2 ±1 h from TROPOMI observations. Based on chemistry transport model simulations and aircraft observations, the net emissions of NOx are 1.3 to 1.5 times greater than the satellite-derived NO2 emissions. A correction factor of 1.3 to 1.5 should thus be used to infer net NOx emissions from the satellite retrievals of NO2.more » « less
-
Abstract Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O 3 surface concentrations. Although iodic acid (HIO 3 ) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO 3 via reactions (R1) IOIO + O 3 → IOIO 4 and (R2) IOIO 4 + H 2 O → HIO 3 + HOI + (1) O 2 . The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO 3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation.more » « less
-
Abstract. Bromine radicals influence global tropospheric chemistryby depleting ozone and by oxidizing elemental mercury and reduced sulfurspecies. Observations typically indicate a 50 % depletion of sea saltaerosol (SSA) bromide relative to seawater composition, implying that SSAdebromination could be the dominant global source of tropospheric bromine.However, it has been difficult to reconcile this large source with therelatively low bromine monoxide (BrO) mixing ratios observed in the marineboundary layer (MBL). Here we present a new mechanistic description of SSAdebromination in the GEOS-Chem global atmospheric chemistry model with adetailed representation of halogen (Cl, Br, and I) chemistry. We show thatobserved levels of SSA debromination can be reproduced in a mannerconsistent with observed BrO mixing ratios. Bromine radical sinks from theHOBr + S(IV) heterogeneous reactions and from ocean emission ofacetaldehyde are critical in moderating tropospheric BrO levels. Theresulting HBr is rapidly taken up by SSA and also deposited. Observations of SSA debromination at southern midlatitudes in summer suggest that modeluptake of HBr by SSA may be too fast. The model provides a successfulsimulation of free-tropospheric BrO in the tropics and midlatitudes in summer,where the bromine radical sink from the HOBr + S(IV) reactions iscompensated for by more efficient HOBr-driven recycling in clouds compared toprevious GEOS-Chem versions. Simulated BrO in the MBL is generally muchhigher in winter than in summer due to a combination of greater SSA emissionand slower conversion of bromine radicals to HBr. An outstanding issue inthe model is the overestimate of free-tropospheric BrO in extratropicalwinter–spring, possibly reflecting an overestimate of the HOBr∕HBr ratiounder these conditions where the dominant HOBr source is hydrolysis ofBrNO3.more » « less
-
We present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6 %, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28 × 106 molecules cm−3 are 8.2 % lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (10.8 %) due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (∼ 2 %) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (∼ 15–27 %). Oxidation of VOCs by Br is smaller, representing 3.9 % of the loss of acetaldehyde and 0.9 % of the loss of formaldehyde.more » « less
An official website of the United States government
